| 1. COURSE DESCRIPTION – GENERAL INFORMATION | | | | | | | |--|--|---|-----------------|--|--|--| | 1.1. Course teacher | Associate Professor Nada Vrkić, PhD
Associate Professor Dunja Rogić, PhD | 1.6. Year of study | 4 th | | | | | 1.2. Name of the course | Special areas of clinical biochemistry | 1.7. Credit value (ECTS) | 5 | | | | | 1.3. Associate teachers | Assistant Professor Ksenija Fumić,
PhD | 1.8. Type of instruction (number of hours L+E+S+e-learning) | 15+30-15 | | | | | 1.4. Study programme (undergraduate, graduate, integrated) | Integrated study of Medical biochemistry | 1.9. Expected enrolment in the course | 25 | | | | | 1.5. Status of the course | Compulsory | 1.10. Level of use of e-learning (1, 2, 3 level), percentage of instruction in the course on line (20% maximum) | 2 nd | | | | | 2. COURSE DESCRIPTION | | | | | | | | 2.1. Course objectives | Present special areas of clinical biochemistry, samples, procedures, and pathological conditions to be encountered in | | | | | | | | practice and belonging to the scope of medical biochemist's work. | | | | | | | 2.2. Enrolment requirements and required entry competences for the course | Audited course in Clinical Chemistry of Organs and Organ Systems 2 | | | | | | | 2.3. Learning outcomes at the level of the study programme to which the course contributes | Defining, analysing and proposing procedures related to research, practice, and monitoring of quality and implementation of new laboratory diagnostic procedures for detection and follow-up of disease and therapy. Assessment of clinical significance of biochemical indicators, detection of the source of errors and variability of results of laboratory analyses, interpretation of results of laboratory analyses. Development and implementation of solutions for practical problems in laboratory diagnostics. | | | | | | | 2.4. Expected learning outcomes at the level of the course (4-10 learning outcomes) | After completed course, students will be able to: 1. State the biochemical and molecular bases of inherited metabolic diseases and psychosomatic disorders; 2. Propose laboratory procedures and samples in screening and confirmation of the diagnosis of metabolic disease; 3. Describe the method of monitoring drug concentration in the body; 4. List and describe the most significant laboratory tests in neonatology; 5. Explain the role of pharmacogenomics in treating neuropsychiatric patients; | | | | | | | | 6. Predict oral anticoagula | ant dose on | the basis of determined | laboratory para | meters; | | |---|---|-------------|---|-----------------|--------------------|--| | | 7. Describe principles of pharmacogenetic testing; | | | | | | | | | | | | | | | 2.5. Course content broken down in detail by weekly class schedule (syllabus) | 8. Explain the principle of GCMS and tandem mass spectrometry. LECTURES AND SEMINARS: Hereditary metabolic diseases. Laboratory and neonatology. Psychosomatic disorders - molecular and biochemical indicators. Therapeutic drug monitoring (TDM) and toxicology. The role of liquid chromatography - tandem mass spectrometry in laboratory medicine. The role of pharmacogenetics in treatment of neuropsychiatric patients. The role of pharmacogenetics in oral anticoagulant therapy. EXERCISES Predicting the dose of anticoagulant therapy. Pharmacogenetics. Analytical toxicology. GC MS and tandem mass spectrometry. | | | | | | | 2.6. Type of instruction | lectures seminars and workshops exercises online in entirety mixed e-learning field work | | independent study multimedia and the internet laboratory work with the mentor (other) | | 2.7. Comments: | | | 2.8. Student responsibilities | Attendance to lectures and active participation in seminars, performance of exercises. Written and oral examination. | | | | | | | 2.9. Screening of student's work (specify the proportion of ECTS | Class attendance | 0.5 | Research | | Practical training | | | | Experimental work | 1 | Report | | | | | credits for each activity so that | Essay | | Seminar essay | 0.5 | (Otherdescribe) | | | the total number of CTS credits is equal to the credit value of the course) | Tests | 0.5 | Oral exam | 1 | (Other—describe) | | | | Written exam | 1.5 | Project | | (Other—describe) | | | 2.10. Grading and evaluation of student work over the course of instruction and at a final exam | Preliminary exam is taken after carrying out exercises. On completion of classes, students' knowledge is evaluated through oral and written examination. | | | | | | | 2.11. Required literature (available at the library and via other media) | Title | | | | | | | | Štrausova medicinska biokemija. Medicinska naklada, Zagreb, 2009. | | | | | | | | Topić E, Primorac D, Janković S. Medicinsko-biokemijska dijagnostika u kliničkoj praksi. Medicinska naklada, Zagreb, 2004. | | | | | | | 2. | 12. Optional literature | Čepelak I. i sur. Medicinsko-biokemijske smjernice, Medicinska naklada, Zagreb, 2004. | | | |----|-----------------------------------|--|--|--| | 2. | 13. Methods of monitoring quality | Outcomes 1-5 are attained by attendance to lectures and seminars, and are evaluated through oral and written exam. | | | | | that ensure acquisition of exit | Outcomes 6-8 are realized through exercises and evaluated through preliminary examination. | | | | | competences | | | |